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Iterative solution of Bloch-type equations: stability
conditions and chaotic behavior
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Two different form of nonperturbative Bloch-type equations are studied: one for the
wave operator of the N-electron Schrödinger equation, another one for obtaining first-
order density matrix P in one-electron theories (Hartree–Fock or Kohn–Sham). In both
cases, we investigate the possibility of an iterative solution of the nonlinear Bloch equa-
tion. To have a closer view on convergence features, we determine the stability matrix
of the iterative procedures and determine the Ljapunov exponents from its eigenvalues.
For some of the cases when not every exponents are negative, chaotic solutions can be
identified, which should of course be carefully avoided in practical iterations.
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1. Introduction

An equation which determines the wave operator can be called a Bloch
equation in a general sense. The wave operator in a many-electron theory, often
denoted by Ω, projects the exact wave function form a reference function. In
a one-electron theory, the wave operator can be substituted to the first-order
density matrix P which projects to the subspace of occupied orbitals. In what
follows we first briefly review a derivation of Bloch-type equations for both Ω

and P .

1.1. A Bloch-type equation in N-electron space

The Bloch equation [1], in the form presented by Lindgren [2–4] and
Kvasnička [5–7] is a nonlinear equation for the wave operator Ω. It is mostly
written in a perturbative form which assumes a splitting of the Hamiltonian
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into a zero-order part and a perturbation. Here we present a simplified, non-
perturbative form of this equation, which was called the nonlinear Schrödinger
equation by Löwdin [8], and which has the same mathematical form as the
Bloch-type equation for the density matrix discussed in the forthcoming section.

We consider a normalized reference state Φ which is assumed to be a mean-
ingful approximation to the exact wave function Ψ. The wave operator Ω maps
Φ into Ψ:

Ψ = ΩΦ.

The formal representation of this wave operator is clearly:

Ω = |Ψ〉〈Φ|. (1)

Using intermediate normalization, i.e. 〈Ψ|Φ〉 = 1, it is easy to find that the wave
operator is idempotent, Ω2 = Ω, although it is not Hermitian.1 To get an equa-
tion for Ω, we start from the Schrödinger equation

H |Ψ〉 = E |Ψ〉 (2)

from which, upon multiplying by 〈Φ|, we get the transition formula for the
energy

E = 〈Φ|H |Ψ〉. (3)

Let us now study the expression

HΩ = H |Ψ〉〈Φ|
= |Ψ〉E〈Φ|
= |Ψ〉〈Φ|H |Ψ〉〈Φ|,

where we have utilized the Schrödinger equation (2) and the energy formula (3).
Identifying the formal definition of the wave operator (1), we finally get

HΩ = ΩHΩ, (4)

which is a nonlinear equation for the wave operator. It can also be written as

(1 − Ω)HΩ = 0. (5)

1Idempotent but non-Hermitian operators are sometimes termed as skew projectors (see, e.g. [8]).
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1.2. Bloch-type equation for the density matrix

An equation of the very same mathematical structure applies also for the
one-electron density matrix P in Hartree–Fock theory. To get this, we recall that
the Fockian F and P are simultaneously diagonal in the basis of canonical MOs,
thus their matrices in an orthogonal basis commute.2

F P = P F. (6)

We recall also that P is Hermitian

P† = P,

its trace is equal to the number of electrons:

T r P = N ,

and it is idempotent

P2 = P.

By virtue of the latter property, multiplying equation(6) by P from the right, we
get

F P = P F P, (7)

which can also be written as

(1 − P)F P = 0, (8)

or, by introducing the hole-density matrix Q = 1 − P , as

Q F P = 0.

This result is rather trivial: it expresses that the Fockian does not have matrix
elements between virtual and occupied MOs, which is a direct consequence of
the Brillouin theorem. As noted by Mazziotti [9], the very same result can easily
be obtained also from the first-order contracted Schrödinger equation[10].

The form of equation (8) is analogous to equation(5), indicating the similar
mathematical structure of the two, otherwise quite different, problems.

2If the underlying basis set is not orthogonal, this equation has to be modified appropriately. In the
present paper, to simplify the formulae, we write the expressions in orthogonal basis. Generalization
to the nonorthogonal case is a trivial exercise.
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2. Iterative solution of the Bloch equation

2.1. Iterative solution of the N-electron Bloch-equation

Equation (5) suggest the iteration scheme

Ω
′ = Ω + η(1 − Ω)HΩ, (9)

which has fixed point when equation (5) holds. Here η is a free parameter which
can be used to tune convergence.

An important feature of this iteration scheme is that it preserves the idem-
potency of an initially idempotent approximation:

Ω
′2 = (Ω + η(1 − Ω)HΩ)2

= Ω
2 + η(1 − Ω)HΩΩ

= Ω + η(1 − Ω)HΩ = Ω
′.

Therefore, starting with a physically correct idempotent guess to Ω, this iteration
sequence, if converges, leads to an exact wave operator of the system. It is to be
emphasized that the converged wave operator can belong to any states, and the
careful choice of the initial guess as well as that of the iteration parameter η is
important to ensure that one reaches the desired target state.

2.2. Iterative solution of Bloch-type equation for the density matrix

An essential difference between the equations determining Ω and P is in the
auxiliary conditions: while Ω need not be Hermitian, the final density matrix P
should. It is easy to prove [11] that the iteration formula (9) cannot yield a Her-
mitian solution. Therefore, for obtaining P we devised the following double iter-
ation procedure:

P ′ = P + η(Q F P),

P ′′ = P ′ + η(P ′F Q′) (10)

with Q′ = 1 − P ′. The second iteration step has fixed point when P F Q = 0.
When this iteration converges, that is P = P ′ = P ′′, we have therefore

Q F P = P F Q = 0

with an idempotent and Hermitian P and Q, which both commute with the Foc-
kian [12].

Instead of this double iteration, Mazziotti [9] suggested to Hermitize QHP
by iterating via

P ′ = P + η(Q H P + P H Q).
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This way, Hermiticity of P is exactly ensured at each iteration step, but its
idempotency is violated. This can be corrected for by inserting a purification step
[13–18] at each iteration.3

The convergence properties of this iteration sequence, similarly to the single
iteration procedure (9), are not excellent: neither form facilitates quadratic con-
vergence. However, according to our numerical practice [11, 12], scheme (10) con-
verges within a reasonable number of steps if parameter η is appropriate. To gain
a more thorough insight into the convergence features, it is worth looking at the
problem of stability analysis of these equations.

3. Stability matrices and Ljapunov exponents for Bloch-type equations

3.1. General formulation

The theory of stability matrices and Ljapunov exponents is well established
and can be found in standard mathematical texts [20]. Here we summarize an
essence of this theory to apply it for Bloch type equations.

Consider an general iteration procedure for an N-component vector x

x (n+1) = fi (x(n)), i = 1, 2, . . . N . (11)

Let vector a be a fixed point of this iteration, that is

ai = fi (a), i = 1, 2, . . . N (12)

and let us consider small deviations around this fixed point:

x(n) = a + ξ (n).

Substitution of this Ansatz into (11) gives

ai + ξ (n+1) = fi

(
a + ξ (n)

)

= fi
(
a
) +

N∑
j=1

∂ fi

∂x j

∣∣∣∣
a
ξ

(n)
j + O(2), (13)

3Note that the “Diophantine solution” to the purification problem used by Szekeres and Mezey [19]
cannot be applied here, since we aim to avoid any explicit diagonalization steps.
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where we expanded the N -variable function f into Taylor series up to the
first-order. Using (12) with neglecting terms of O(ξ2) leads us to

ξ
(n+1)
i =

N∑
j=1

∂ fi

∂x j

∣∣∣∣
a
ξ

(n)
j

=
N∑

j=1

Ai jξ
(n)
j (14)

with the definition of the first-order Ljapunov (Jacobi) matrix

Ai j = ∂ fi

∂x j

∣∣∣∣
a
. (15)

Solution of (14) can be searched in the form

ξ (n) = eλnξ (0),

which, after substitution into (14) gives us the eigenvalue equation

Aξ (0) = µξ(0)

with the notation µ = eλ. We conclude that the modes ξ (0) are eigenvectors
of the Ljapunov matrix while the eigenvalues correspond to the logarithms of
parameters λ which are called the Ljapunov exponents of the problem.

Analysis of converge properties of the iteration process (11) can be based
on the value of the Ljapunov exponents λ, or on their exponentials µ. In the
simplest cases all µ-s are positive thus all λ-s are real. Then, the procedure con-
verges only if all Ljapunov exponents are negative, that is, if all eigenvalues of
the Ljapunov matrix satisfy the condition

0 > m > 1.

When at least one of the exponents becomes positive, the iteration will diverge
along the corresponding trajectory.

It may turn out that one or more eigenvalues of the Ljapunov matrix
become negative. In this case the corresponding Ljapunov exponents can be writ-
ten as

λ = log |m| + iπ,

leading to the convergence condition

Reλ = log |m| < 0,
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which requires

|m| < 1.

The iterations in this case are not monotonic, but exhibit oscillatory conver-
gence:

ξ (n) = eλnξ (0) = eiπnelog |m|.

On the borderline of convergence and divergence, nonlinear systems may also
exhibit chaotic iterations [21]. Examples for this case will be shown in the numer-
ical section.

3.2. Stability matrix for the wave operator Ω

The Ljapunov matrix for Ω-iteration (9) can be obtained by the matrix rep-
resentation of the wave operator and considering matrix elements Ωµν as iter-
ation parameters xi . Here the hyperindex i is identified to the composite label
(µν). Using definition (15), we formally write

Ai j = ∂ fi

∂Ω j

= δi j + η
∂

∂Ω j

[(
1 − Ω

(n)
)

HΩ
(n)

]
i
,

where the form (9) was taken into account for f . Resolving the hyperindic-
es to composite ones and evaluating matrix multiplications, with the notations
i = (µν), j = (λσ) we finally get

Aµν,λσ = δµλδνσ + ηδνσ Hµλ

−ηδµλ(HΩ)σν

−ηδνσ (ΩH)µλ. (16)

Eigenvalues of matrix Ai j will be related to the Ljapunov exponents of Ω-iter-
ation. This matrix is not Hermitean, but in the numerical calculations reported
below we have never noticed any complex eigenvalues. The eigenproblem of non-
symmetric matrices are easily solvable by standard procedures [22].

3.3. Stability matrix for the density matrix P

The Ljapunov matrix for the P-iteration (10) can be obtained in an anal-
ogous way. Here the independent elements of matrix P are used as iteration



P. Szakács and P. R. Surján / Iterative solution of Bloch-type equations 321

parameters. The result

Aµν,λσ = −δµλδνσ − η(H P)σνδµλ − η(P H)µλδνσ + η(Q H)µλδνσ + η(H Q)σνδµλ

η2(Q H)µλ(H Q)σν + η2(P H)µλ(H P)σν

appears to be a bit more complicated than (16) due to the double iteration used
in (10) to ensure the Hermiticity of converged P .

In the following section, we present a few examples to the significance of
the eigenvalues of these matrices and show some representative iteration pat-
terns.

4. Numerical analysis

4.1. The Bloch-equation in N-electron space

We emphasize that examples for using (9) are included here merely to study
the iteration properties of these equations, and definitely not to propose any
effective computational methods to determine the wave operator. Therefore, we
have chosen simple two-electron systems, the H2 molecule in the double-zeta-
sized 6-31G basis [23] and the He atom in a triple-zeta-sized 6-311G basis. For
both of these sample cases the full-CI Hamiltonian, the matrix of the exact wave
operator, as well as the Ljapunov matrices fit into the operative memory of a
small PC.

Let us see first the case of the H2 molecule. In table 1 the largest Ljapunov
exponents are shown as a function of the control parameter of the iteration (η).
The table clearly shows that until the largest exponent is negative, convergence
can be achieved, but the number of iteration steps needed for this depend heav-
ily on η. As the largest exponent exceeds the zero threshold, the iteration starts
to oscillate between two points. For even larger exponents, the number of bifur-
cations starts to increase and suddenly one finds a completely chaotic iteration.

Similar findings are reported for the He atom in Table 2. Dependence of the
largest Ljapunov exponent on parameter η is shown in figure 1 for this case. In

Table 1
Iteration features for the Bloch equation of wave operator in the case of the H2 molecule. The value

of 10−8 was used as the criterion of convergence in total energy.

η Largest Ljapunov exponent (λ) effect

−0.100 −0.370 converges in 158 steps
−0.500 −0.423 converges in 44 steps
−0.605 0.002 oscillates between 2 states

between −0.770 and −0.776 > 0 several bifurcations
below −0.777 > 0 chaos
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Table 2
Iteration features for the Bloch equation of wave operator in the case of the He atom.

η Largest Ljapunov exponent (λ) effect

−0.100 −1.2600 converges in 119 steps
−0.155 −0.0104 converges in 260 steps
−0.156 +0.0026 oscillates
−0.198 +0.4329 bifurcations (4 branches)
−0.200 +0.4494 chaos
−0.240 +0.7328 diverges to ∞
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Figure 1. Dependence of the largest Ljapunov exponent for the iterative solution of the Bloch equa-
tion in the case of the He atom.

agreement with table 2, the figure shows that convergence can only be expected
for η � −0.155. Appearance of branching (the first bifurcation) at η = −0.157
is illustrated in figure 2., while an example for chaotic iteration is shown in fig-
ure 3. As typical for chaotic systems [21], as the iteration parameter deviates
from its optimal value (around −0.5 in this case), more and more bifurcations
occur, suddenly ending in a completely chaotic iteration.

The fact that chaotic iterations appear upon iterative solution of Bloch type
equations is not surprising since at the so called logistic map

x ′ = ηx(1 − x),

which can be viewed as a one-dimensional Bloch-type equation with fixed points
0 or 1, represents a prototype for simple chaotic systems [21].
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Figure 2. Convergent iterations versus branchings for the iterative solution of the Bloch equation
in the case of the He atom.
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Figure 3. Chaotic iteration for the Bloch equation in the case of the He atom. The value of
the iteration parameter was η = −0.22. The corresponding largest Ljapunov exponent was 0.6011.

4.2. Bloch-type equation for the density matrix

We have performed a somewhat more detailed analysis on the iteration
properties of equation (10). First, we have performed an ab inito Hartree–Fock
calculation for 60 water molecules arranged into a H-bonded chain in a split-
shell basis set. The results are not reported here, since we found the rather
trivial effect that as one deviates from the optimal value of η the number of
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Figure 4. Bifurcations during iterations for the density matrix P in the case of the Hückel treatment
of butadiene. The energy is plotted in units of β. The numbers at the curves indicate the value of

parameter η.
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Figure 5. The same as in figure 4, at η = 0.39 with λ = 0.021, producing already a chaotic pattern.

necessary iteration steps first increase, then the iteration diverges; however, no
sign of chaos was found in this case.

Next, we turned to the simple problem of determining the Hückel density
matrix for butadiene by equation (10). We found that the iteration converges up
to η < 0.355, after which bifurcations (figure. 4.) and chaotic behavior were
found. The latter is shown in figures 5–8. Figure 5. shows the seemingly struc-
ture-less pattern of a chaotic iteration, while plotting density matrix elements
against each other (in analogy to the configuration space of dynamical systems)
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Figure 6. Plots of chaotic iterations for density matrix elements in the ‘configuration space’
of parameters. The numbers at the curves indicate the value of parameter η.
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Figure 7. The same as in figure 6. for η = 0.358.

leads to the characteristic orbital patterns shown in figures 6 and 7. The differ-
ence between the trajectory corresponding to η = 0.357 in figure 6. and η =
0.358 (figure 7.) is remarkable. In the latter case, as illustrated in the enlarged
insets, two spiral attractors are shown, thus the iteration procedure fails to con-
verge to a unique solution. The direct iteration energy sequences for these two
cases are shown in figure 4, where the oscillatory pattern of the latter case is also
exhibited in the inset.

Another interesting way to visualize chaotic iterations is shown in fig-
ure 8, where the change (the “derivative”)of a density matrix element between
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Figure 8. Plots of chaotic iterations for density matrix element P12 in the ‘phase space’. The num-
bers at the curves indicate the value of parameter η.

subsequent iterations is shown as a function of the matrix element value. This is
analogous to plots in phase space of dynamical systems. A characteristic feature
of the plot is the orbitals consist of disconnected loops (note that trajectories can
never cross themselves in phase space).

5. Closing remarks

A practical conclusion from the above studies is that one has to select care-
fully the appropriate value of the iteration control parameter in order to find
convergent pathways in course of the iterative solution of Bloch type systems.
As the presented numerical examples indicate, there is a clear relation between
the control parameter η and the largest Ljapunov exponent of the problem, λ.
Fortunately, our numerical practice indicates [11, 12] that the optimal value of
parameter η is, although quite sensitive to the quality of the basis set, is highly
transferable between chemically similar systems of different size. Therefore, an
appropriate value for η can be established for small systems, and there is no need
to perform the Ljapunov analysis in each case, which would be computationally
prohibitive for larger molecules due to the size of the stability matrices.
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